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1. Introduction

Let H, and H, be real, separable Hilbert spaces and A:H,—H, be a linear bounded
operator. By Hadamard's definition, a linear problem Ax =y is well-posed if the solution
exists, is unique and depends continuously on the data; otherwise a problem is called ill-

posed.

Examples: 1) Fredholm integral equationsof the first kind:
If QcR"is a bounded region, k¢ L’ (Q?), feL*(Q), then
Kflx) = [ kix,vifiyvidy

0
is Hilbert-Schmidt in L% Q).

Hence the linear problem Kf=g (geL? (Q) given) isill-posed.

2) Alinear equation Ax=yin R"may be numerically ill-posed, if
detA<<1

In the following we will consider such problems from a statistical point of view as
introduced in the work of O.N. Strand and E.R. Westwater [11], J.N. Franklin[2] and A.
Uhlig [13]. This point of view is motivated by the following reasons:

Many methods for the calculation of unknown states x in physical or technical problems
do not allow to observe the interesting state x directly, but give an observation y, whose i
functional relationship with x may be described by a linear equation Ax=y as above. |
Such observations often may be affected with a random additive noise. Also the 1
unknown state x may depend itself on a random law. Thus a linear inverse problem
Ax =y often is already an approximation for an equation of the form Ax+z=y, where
X,y,Z are random elements, i.e. we have a filtering problem. namely to estimate the

unknown state x given a noisy observationy.

Of course, one will need additional information to solve this estimation problem.
assumptions on the laws of the random elements and a loss function to optimize the
estimate. However, the deterministic methods to give an approximate solution for an ill-
posed problem Ax=y in Hilbert space, for instance the Tichonov regularization ( cf.
[12)), also need additional information. The Tichonov regularization, i.e. the solution of i
the variational problem l|Ax-yll? +aF(x) =min!, requires information on the smoothness
of x to choose the regularization parameter a and the regularization functional F.
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To give estimates of the approximation error, this method also ne«d; tc know a compact
set containing the solution x.

Considering the problem as a stochastic filtering problem, those assumptions are
replaced by statistical assumptions on the signal and the noise.

Let (Q.F.P) be a probability space, H, and H, real, separable Hilbert spaces, X an
H -valued random variable on (Q,F.P),and Y,Z H,-valued random variables resp. . For
a linear bounded operator A:H,—H, we consider the estimation problem AX+Z=Y,
i.e. we want to give an estimate x* for X(w) given Y(w)=y.

To make the paper self-contained, in the following we shortly summarize the well-
known solution for finite-dimensional state spaces H, ,H,. In section 2 we will consider
the problem for infinite-dimensional state spaces.

Finite-dimensional state spaces H, .H,

Notations: i) E(<X,h>)=<x'h>(he¢H,) forasuitablex'¢H ;
x'is called the mean E(X) of X.
i) E(<X-x'h,><X-x'h,>) = <Rh h,> (h,.h,eH)) with
R self-adjoint, R=0, and for X centered, (¢,) CONS in H:

dx'mH1

ENXU%)= > <Re,e>=TrR
k=1
R is called covariance of X.

Assumptions: i) X andZindependent
ii) X centered with covariance R
iii) Z centered with covariance S
We look for a linear least squares estimate L :H,—H , i.e.
(1) EMIX-LoYH1?) = min {E(HX-LYI*): L:H,—H, linear, bounded}

Let Q:H,—H, be the cross-correlation between signal X and observation Y,
i.e. <h, ,Qh,> = E(<X,h;><Y,h,>),(h,¢H , h,¢H,).
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Calculating the error covariance:
(2) ENIX-LYII°) = Tr. [R+ LKL*-LQ*-QL*] =:F(L)
where K is the covariance of Y and L* denotes the adjoint operator of L, we see that F is
a quadratic form on the Hilbert space L(H,H)) of linear operators from H, into H,
endowed with the Hilbert-Schmidt norm

dimH,,

nLn? = N <Lf.f > (f 1ICONSinH,)

=1

ChoosmgL such that L K =Q, one obtains F(L)=F(L,) = Tr.[R-L KL *]

(LeL(H,.H))).

Thus L solves the estimation problem.If X.Z are Gaussian, one explicitly has Q =RA*,
K=ARA*+S and therefore L, =RA*(ARA*+S) ' here K ' denotes the inverse of KifK
isinvertible, otherwise K ! means the left-pseudo-inverse (K*K) 'K* of K.

For a given right side y=Y(w) one thus has as LLS-estimate (linear least squares

estimate)
(3) x*=RA*(ARA*+S)'y = Ly

Remarks
i) If X.Z are not centered, x* =E(X) + L (y-A(E(X)-E(Z)) is LLS-estimate

i) If X.Z are independent Gaussian with regular covariances, then

L,Y =E(XIY), the conditional expectation of X given Y,

and x* is the mean of the conditional distribution of X given Ytw)=y
iii) L, minimizes the error of linear functionals of the estimate, ie.

(4)  E(<X-L,Y,h>)=min{E(<X-LY.h>?:LeL(H,H)} (heH))

iv) If Aisinvertible and S=0 (no noise), then x*=A 'y, the deterministic solution of
the inverse problem, for arbitrary covariance R.

v) A connection with Tichonov's regularization method is given by the following
observation:
The functional IlAx-ylI?+0<R'xx> attains its minimum  at

x*=RA*(ARA*+0o2D'y  (cf[12].

I
vf\',,




Thus Tichonov's method with regularization parameter o and regularization functional
<R'..> gives the LLS-estimate under the assumptions of a centered signal X with
regular covariance R and a centered white noise Z with covariance oI , I identity

operatoron H,.

2. LLS-estimates in infinite-dimensional state spaces.
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In the following let H, and H, be real, separable. infinite-dimensional Hilbert spaces. Of
course, the problem in generalizing the results to infinite-dimensional spaces depends
on the choice of the mathematical model for the signal X and the noise Z. The following
considerations may clear the fundamentals and show the significance of the
development of a finitely additive filtering theory in the work of A.V. Balakrishnan [1]
and in a series of papers of G. Kallianpur and R. Karandikar (cf. {8]).

2.1 Gaussian signal and noise with nuclear covariances.

For convenience , let A:H —H, be onto, but not continuously invertible. Let X. Z be
zero-mean Gaussian, independent, with nuclear covariances R and S resp.. and
Ker(ARA* +8)={0}. By £(H,) we denote the Borel measurable subsetsof H,.

The problem is again to give an estimate x* given Y(w) =y, where AX+Z =Y.

By assumption, the operator (ARA* +S) has dense range in H,; hence it exists a unique
left-inverse (ARA* +8) ! with domain of definition rgtARA* +S); but it is unbounded as
inverse of a nuclear operator. Moreover, the well-known crucial point is, that
rgtARA* +S) is a set of measure zero with respect to the distribution of Y:

(5) PoY!(rg(ARA*+$S))=0
Proof. Denote ARA* +S =: K: then rg(K)crg(K*). If (e,) is a CONS of eigenvectors of K

with corresponding eigenvalues (},). then xerg(K")iff (A t<x.e >)el (™).
But A, *<..e > isstandard Gaussianon (H,, £(H,),PoY "):hence

* < e >2

< . -1 : -1 .
—\-—— is PoY™" - ae divergent.ie PoY™ ' irgtKh=1

k=1 K
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N Thus, in this case, the estimate x*=Lyy, L,=RA*(ARA*+8S)"', as given in [2] , is

S . . . . 1
‘ useless, since it works only for observations y, which PoY '- a.s. donever appear.

:::.:::f In the following,. it is shown that there exists an extension of L  to an operator L whose
o domain of definition has PoY ! . measure one, i.e. L is a measurable transformation,
A

.;) with respect to PoY !,
Proposition 1. Let (e,),” be a CONS of eigenvectors of K with corresponding
::‘.: : eigenvalues (\,)*.

“’ Let (r,)," be a CONS of eigenvectors of R with corresponding
N eigenvalues(p, )~
2 Then it holds for every serg(K):
0
o S G

"-: 16 Losz E_ pf [ - <R’A'el, rj> rJ

[} 1=1 1=1 !
7--3 Defining L by (6) for all y¢H, satisfying

o x * <y,e > _

- N p N — <RYAte .r> 7<=,

Lo — " = v

o =1 =1 !
( one obtains:

i) LextendsL,

ii) L ismeasurable and PoY!(D(L))=1,
: where D(L) is the domain of definition of L.

:'_-::j; iii) x*:=Ly is the mean of the conditional distribution of X given
':é yeD(L)
A

;_\‘ Proof. Clearly, L extends L, the domain D(L) of L contains D(L), and L is £(H,)-
b °

et
ot e e

£(H,) - measurable as a limit of finite sums of measurable mappings. One has
S to show PoY {(D(L))=1
0 To prove this, the following facts will be used (cf. Gihman-Skorohod [3)):

"."

e
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A well-known theorem of Kolmogorov states: if ({ ), are independent, K-
valued r.v.such that E{, =0 (ke¢MN)and

S Eldk12<x,then S Qk<r ae
k= k=1

—

If (Cx),” are R-valued such that
El( I<=then N I{l<xae
k=1

Tl A
"

With the above notions

* <Y,e >
= S \l <Y.e; >e andY .= ‘l
1= \:
are standard Gaussian (i€ N)
(ARA* +8S)%e =1 te (i¢H)
By d) Lsis transformed to

<s, e >
l

r

s=\ J‘\H<Ce,r> J

:1 1=1 : \§

where C: =R!A*(ARA* +S) 4, consequentlv

LY = X g ': <Ce .r >V
=1

-

ForCine)itholds|ICli<1, because:
veD(C)=rg(ARA*+85)* = v=(ARA*+S)tu forsuitableuc¢H,,

and since S=0
HCVIIZ=1IR!*A*ull = <(ARA* +S)u,u> =Ill(ARA* +S)tulliZ=livl2,

Thus, C has a continuous extension to all of H,, say Ce, since D(C) is dense in
H,. Hence, C* =C¢* exists and HC*ll = 1; also C** = Ce exists and lIC**Il < 1.
It holds C* =(ARA*+S)*AR!

ST AN Sl A e AT AT AT ‘,-."r .- e e e e e e
. - N - - 3 - - - - - T .

y LA .r_..,- s .: N ,‘.- AR T AEATA
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Now, set

= N <Ce.r>Y |
l‘=_l v !

Thenforalljeis. (j<-P-a.e..le.

x
Po\'“l{;s N <C(-,rJ> \\_3«:s‘e> <r
=1

Namely,
EY =0,EY>=1 (ieN)and thus

ok A <Ce.r>Y J'= N <e Cor>Psiri’=1
j»} =1 ’ i=1 ‘ ’
,‘_:: and a) proves g).
Furthermore, for all je:i: EC* = 1. Namely, define
n
) C = N <Ce.r >y
1=1
and observe Y independent and
n
Eajz =N <Ce.r>’=<1
n L { )]
1=1
Thus, by g), (| P - a. e. convergent for n—-, and also Cm-’ is a P - a. e. convergent
sequence of r.v. such that
R
lim n k’j.n = ‘ﬁ .
Thus by Fatou's lemma,
; E & < liminf ch =N <e . Crr>P=lCr I s
p b] n Ks] hl i ] J
-“_' l.=
e Eventually, we obtain
5';:' @
N 2_ % , 2
“ LY W= 3w

=1
convergesP-a. e, since

E E‘ pjljzi s> pj:Tr.R<w

P
=t =1
and by b),
N p)(;ﬁ2<°° P-a.e,iePoY '(DLy=1

=1

TN
.

AR P
A 1,:__':,_\. e
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Now the estimate is set x*: =Ly for yeD(L)). To show assertion iii) of the proposition, it
is remarked, that (X, Z) is a zero-mean Gaussian random element with values in H xH,
and covariance operator
( R O .
os/
Therefore, by the independence of X and Z,
10 ./X
X, Y) = (A . )( 2
and (X,Y) has covariance operator

R RA* 10 . RO , 1A*
‘(ARARA‘+S,):(A1 (OS)(OI

Consider the error (= X-LY.

It is not immediate that {is Gaussian, since L is unbounded.

Let$,((h,, h,):=E_,expli<((Y).(h h)>] =

. ( I -L _
Ey yexp|i< o 1 )1x,y),(hl,h?)> =
E,yexpli<X. h>-<LY,h >+ <Y, h,>]

be the characteristic function of (,Y).

Let L denote the partial sums in the definition of L:

L,:=Pu/L Py, ,whereH=sp{r,....,r} . H' =spfe....e}, and
Py, the orth. projection from Hx onto Hii (k = 1.2:ij¢ ).

Then
h) L,(ARA*+S) = Py, RA*Py,,’
k) Lij AR = Py /R{CPy,'C*R".

Calculating ¢ ., , denoting analogously the char. function corresponding to L ,one gets
gd'.y) g gously P gtoL ,oneg
1)
by thphp =limlim ¢ th . hy

1 )
by continuity of the norm and the exponential function and by Lebesgue's theorem.
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m)
;10 h
$ly Bphy =By explici v U ) h, )| =
1y «
‘ R RA* / [ 0 ( hl { [ 0 ( h] ' ¢
xp| -1« . . . ‘ >| = _
exp| =<l g aras-s | —L W B g mn ard s )
]
7 . ( "
etp!-—é <(R-P R!CP C*R’ |h1.h1> +2<<RA*-P RA*P h h >~ <tARA*-S+t h >| 1‘
i H¢ H, H TR AR
1 2 1 A
Bv 1) one gets E
n ¢.y (h h)=exp{-4[<(R-R:C**C*R*)h . h,> +
(ARA*+S)h, h,>]} =
= exp{-$<Dth , h,),(h,,h,)>} where
i R=R!C**C*R' O
D = “l J
0 ARA*~S
is again nuclear and non-negativin H, xH,.
Thus ((, Y) is Gaussian in H, x H,, zero-mean, with covariance D.
The form of D gives independence of (and Y.
Hence (is zero-mean Gaussian with covariance R- R:C**C*R*
Eventually, X = ( + LY and the conditional distribution of X given Y = y, v ¢D(L). is
obtained by
PIX¢BIY=y)=P((+LY€e¢BIY=y)=P((¢B-LYIY =y)
=P((€¢B-Ly)=P((+ Ly ¢B) (B¢£&H)),
i.e. x* = Ly is the mean of the conditional distribution of X given
Y = y,y € D(L), asin the finite dimensional case. :
4 K
o, L ._:.‘-'... AL ;. A o PO .:_._:_._:_.."_._"“. "...:.-‘:_._:‘-_-..._:_-,:.- et e T T T e T T N e e e '
TN RN e e LT S st oot I Lo A e
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Remarks:

1) L is a measurable linear estimator which dominates the class of continuous
linear estimators T:H, — H, without necessarily being a member of thix

class.

i1) Also in the sense of (4), L gives the best mean square estimate for linear
functionals <X,h> of the signal X (h¢H, arbitrarily fixed).

iii) If X,Z are not centered, we find analogously to the finite dimensional case
x* =E(X)+ L(y-A(E(X)-E(Z)) (yeD(L))as
LLS-estimate for x with respect to (1) and (4). But additionally we have to
require AE(X)+E(Z)¢D(L) to insure that the right side above is well defined.

iv) If the correlation K of Y has a non-trivial null-space, then one considers
H, & Ker(K). It holds PoY '(H, & Ker(K))=1. Thus, we have a unique left-
inverse for the restriction of K onto H,, and obtain a measurable linear
extension L for L, where L =Qo(KIH,© Ker(K))!, by restricting the
extension procedure in Proposition 1 to those eigenvalues of K which are
greater than zero. Hence, the above results can be transferred also to this

case.

v) Let signal X and noise Z be zero-mean Gaussian with nuclear covariances R
and S resp., but correlated with cross-correlation
Q:H, —H, .Ifa joint Gaussian distribution of (X.Z) with correlation
R Q
(o)
is assumed, then L corresponds to
L :=(RA*+Q)(ARA*+AQ+Q*A*+S).
Again PoY'Y(D(L,))=0. Analogously to Prop. 1, an extension of the
estimation operator L, to a measurable transformation L is possible under
the additional assumption that rgQcrgR?*.
Then again the estimation error (= X-LY is zero-mean Gaussian, and Lis the

optimal estimation operator with respect to (1) and (4).
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2.2 A finitely additive cylinder measure as noise mode!
2.2.1 Weak random variables
We make the following assumptions:
) The signal X is zero-mean Gaussian with values in H, and nuclear
covariance R.
i1) The noise Z is a zero-mean Gaussian weak random variable with bounded.

strictly positive covariance S:H, — H,. i.e. a zero-mean Gaussian cylinder

measure with covariance operator S is associated to Z.

1il) The signal and the noise are independent.

We look again for an estimate of x in the problem Ax+z=y, where A is onto. but not
continuously invertible, and Ker(ARA* + S)={0} for convenience.
Asitisshownin (1], the following result holds:

If the class of admissible estimators is restricted to Hilbert-Schmidt
operatorsin (1) and (4), then L y: = RA*(ARA* +S) !y is the optimal estimate
for x in the problem Ax +z=y with respect to the modified criteria (1) and (4),
and L, is Hilbert-Schmidt itself.

The proof is the same as in section 1., if the restriction to Hilbert-Schmidt operators as

admissible estimators is made.
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,'-:i: Remarks:
) i) L,y cannot directly be interpreted as mean of the conditional distribution of
: X given y, since the 'conditional distribution’ of X given an observation.
:;:; which is associated to a cylinder measure on H,, does not exist in the
; countably additive sense.
,_: Only for linear functionals of the estimate this term is appropriate in the
: sense of modified (4).
. i1) The restriction to zero-mean random elements is not essential
. (cf. 2.1). The assumption of independence of signal and noise may be replaced
: by the assumption that the correlation K=ARA* +S of the observation is
\ strictly positive.
5 i If the signal-covariance R is allowed to be non-nuclear, then the error
.o covariance Tr.(R + LKL*-L.Q*-QL¥) is not defined
}_I::' (Q cross-correlation between signal and observation).
Z;': However, if K is continuously invertible, then L : =QK'! is the best estimator
{ ' for linear functionals in the sense of modified (4).

iv) If we assume the signal to be a white noise, i.e. a zero-mean Gaussian weak
random variable on H, with covariance ¢’I, and the noise as well zero-mean
white noise on H, with covariance o’I, then L)y =0 *A*(g,’AA* +0°’I) 'y is the
solution of the Euler equation (A*A+aB)x=A*y (y¢Hg), where

-:\ a:o—) and B=1
L %
‘ . That means, that the solution of the Tichonov regularization
, Z:-ET IAx-ylI2+ aF(x) =min! for the ill-posed linear problem Ax=y is given by our
7:',': estimate L,y in the filtering problem Ax+z=y, if the regularization
. *" parameter a and the regularization functional F are chosen to be
2
7o a= °_2

P
Q

0
and F(x)=UxI1? (cf. [12)).
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2.2.2 Radonification of the cylindrical model by the concept of Abstiract Wiener Space

In the foregoing section we have seen that the solution of the filtering problem
AX +Z =Y for a noise model, which is only a finitely additive cylinder measure on the
observation space H,, gives an estimate L,Y. which is optimal for linear functionals of
the signal, i.e. E(<X-L)Y, h>?)=min {E(<X-LY h>-):L:H, — H, Hilbert-Schmidt
operator}. The observation measure PoY ! in this case also is a finitely additive cylinder
measure on H,. In this framework, for instance in [1] the Kalman-Bucy filter equations
are developped as equations on the observation space, related to the finitely additive
cylinder measure PoY'! . In order to get an interpretation of the estimate as conditional
distribution of X given Y, in the usual countably additive sense, the concept of Abstract
Wiener space is commonly used. This means, that the observation space H, is embedded
into a larger space W in such a way that a radonification of the cylinder measure to a
countably additive probability measure on the Borel sets of W is possible (cf. [4], [9]):

Definition. (cf. [4])
Let H be a real, separable Hilbert space, and W a real Banach space, and p a zero-mean

Gaussian cylinder measure on H.
Leti: H — W be a continuous injection with dense range in W, The triple

(i, H, W) is called an Abstract Wiener space . if the norm Il.Il, of W is measurable with
respect to H and p in the following sense:

For every £>0 there is a finite-dimensional projection P. on H such that for every
finite-dimensional projection P on H orthogonal to P, we have:
p({x ¢ H: Ili(Po)ll, >e})<e

Examples and further references can be found in [9].

To apply this concept to our filtering problem AX+Z=Y we make again the
assumptions that X is a zero-mean, Gaussian, H,-valued random element with nuclear
covariance R, Z is zero-mean Gaussian white noise on H, with covariance I, and
independent of X. Then the weak random variable Z defines a zero-mean Gaussian
cylinder measure v, such that for the corresponding outer measure v* holds the well-
known fact v¥(H,)=0 (cf. [5]). The cylinder measure v does not have a countably
additive extension to the Borel sets £(H,) of H,, since in a certain sense H, is too small.
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SN Thus, one extends H,:
g Definition. Let C:H, — H, be an arbitrary linear operator which is
2
o
- i)  self-adjoint, positive semi-definite
) f.
') .. .
9% 11)  injective
SN
%
«.';:
ror iii) Hilbert-Schmidt
e
e Define <x,y>,:=<Cx,Cy> (x,y¢ H,), ILIl, the corresponding norm, and
b let W be the completion of H with respect to the norm I1.1}, |
el
- A . . . . . . .
\ Itis shown in (4], that Il.I[| is a measurable norm with respect to v, the weak distribution
corresponding to Z. Thus the triple (i, H,, W), i:H, — W the canonical injection, is an
} : Abstract Wiener space. The Gaussian cylinder measure v induces a Gaussian cylinder '
k- measure v,. on the cylinder sets of W by
'»’4 Ve ({weWi(w (w), oW (W)EB:=v({heH,:(w,'(ih), ....w '(ih))eB}) for every choice of
2y W'\, w €W neN, Be£(RM).
:::S.‘; According to [4], v possesses a countably additive extension v' to the
*' o-algebra generated by the cylinder sets of W. Since H, is separable, this
" o-algebra coincides with the Borel-o-algebraon W (cf. [10)).
RS Again , v.'iszero-mean Gaussian.
» 7.
i We denote the correlation operator of this measure v.' by G,. For the restriction G, H,
\ n
p » of G, onto H, (identified with the subspace i (H,)in W) we have.
™) .'f': )
oo Lemma 1. G,IH,=C?
;‘ '. - . . -
S Proof. For h, h, €H,, the function <. ,h;> <. h,> : W——R is a cylindrical
AS . .
QN function. Hence, by definition of v.',
AN
U '
‘ <h1'G1h2>1 = jw <w, hl>l<w,h2>ldvC (w) = . <h, h1>1<h. h2>ld\’ hy =
0t 2
N ..
w.js.
NN .
g J <h,C’h,><h,C?h,>dv (h) = <C?h,,C?h,> = <h,C*h,>
&, H,
.‘\.:'
u-"'.'q #
)
.‘H
.
»?’n
'*.v‘a.v a.f.‘}ﬁ.-".-n.f g A Y A A A O AL ST AR C Ty N

'nc D (et ) . *"»{,(n« J’""
. C“:‘». AN L D W A A v AMD MOV A l‘l'c.t.q A‘.f""“‘"‘l.l.vl‘!i‘ Lt
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Now, we consider the equation AX+Z =Y. We transfer canonically the probability
measure Po(AX) ! onto £(W):

p:=Po(AX)!
p:=poi! ,ie.p'(B)=p({hcH,ith¢B}) (B<&W))
p'is zero-mean Gaussian and for its correlation operator G ;W —W holds:

Lemma2. G,/H,=ARA*C’
Proof. Forh,, h,€¢H,,
<h1,G,,hq>l: <w,h]>l<w,h,,>1 dp'(w) =

W

[ <h,C%h > <h,Ch,>dp(h) = <C°h.ARA*C’h,> = <h . ARA*C’h,>
. 2 2 2

2

The sum of the Gaussian random variables on W, corresponding to v.' and p', has a
measure p'as its distribution. p' is also zero-mean Gaussian and has G;:=G, +G, as
correlation operator, due to the assumed independence of v and p and therefore of v '
and p'. We now have immediately:

Lemma 3. 1) G, is nuclear
ii) G,H, = (ARA*+1)C?

iii) p'is the radonification of the cylinder measure poi!, where p
denotes the weak distribution of Y in H,.

For the cross-correlation G;;W-—H, between the signal and the observation measure
holds

'- RN '-:. el e ':,f"'- e e ‘:_:: Ay e e e TR Y o PN :"‘-‘:C-::\-l‘:-‘:* - x;\:’ 3 ';:::::;..'
AL 2 e oy ¢ y
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Lemma 4. G,IH, = RA*C?

Proof. Forh ¢H , h,¢H,,

<h.Gh >= <h. h,><w.h > PoX 'idh ' dwo =
1 42 . 1 201
Jle\N

| <hh><h' h > PoX"hidhopidht =

4HIVH_)

‘ ~h.h >-<h' Ch,> P0x~l(dhlp'dh') = <h RA*C’h,>
i 2 1 N
TH

If we summarize now these observations, we can state that the assumptions of 2.2.1 are
satisfied for the transformed model in the larger space W. Analogously to Proposition 1.
we obtain an extended estimation operator L:W-—H, which is a measurable
transformation , i.e. p' (D(L)) = 1. Analogously, Lw gives the mean of the conditional
distribution of X given w¢D(L). Lis the extensionof L :=G,G, ', where p' (D(L ) =
p'(rgG,) = 0 again. L can be given explicitly on the dense subspace rg{(ARA* + \C") of
W:

Proposition 2 Lisgivenonrg ((ARA*+1C* by
Lirgt(ARA*+D)C") = RA*ARA*+D)!

Proof. L1 rgttARA*+DC? = G,IH,oG, 'IrgtARA*+DC-)
= RA*C((ARA*+D)C-)! = RA*(ARA*+D)!
by Lemma 3 and Lemma 4.

Thus, a solution of the above linear filtering problem is given in a countably additive
framework by using the concept of radonification of the cylinder measures in Abstract

Wiener space.
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Remark that the solution is independent of the renorming operator C by which the
Abstract Wiener space was constructed. It is formally equal to the ‘cylinder measure
solution' and ditfers from it only by its domain of definition, which makes it a
measurable transformati.n from W to H, with respect to p'. Hence. the martinguic
approach to the Kalman-Buc: filter in the countably additive theory, as worked out in
[71, gives formally the sume result as the ‘cylinder measure filter' in [1]. We conclud-
with an argument that shows the significance of the finitely additive filtering theory,
recently worked out by G. Kallianpur and R. L. Karandikar {7}, namely that the space
H, of the actual observations has zero probabiltiy with respect to the radonified

observation measure p'in W,

Proposition 7 With the above notations. identifying H, with itH ). it holds:
a'tHo=0
Proof: As is well-known, W 1s isometrically isomorphic to a closed linear

subspace F of the space C[0.1] of continuous functions on the unit
interval. If this isomorphism is denoted by yw:W_—-F, and H denotes the
reproducing Kernel Hilbert space generated by the covariance of the
Gaussian measure v.'oy ', then H, = y '(H), according to (6]. If B is the
covariance of v.'oy !, then x<H iff xérg (B:), due to [3]. Thus v, '(H ) =
v.'oy ! (rg(B*)) = 0.

The last equality holds analogously to (5).

Eventually, using a result of G. Kallianpur and R.L. Karandikar on
mixtures of translates of the canonical Gauss measure (cf. [8]), we have

= | v (H,~hipidh =0
IH) e

#

If Z is a white noise in the model AX+Z =Y on an observation Hilbert space H, (often of
smooth functions; for example H, the RKHS of the Brownian motion), this precisely
means, that the filter solution with respect to the radonified observation measure p' on
Abstract Wiener space W does not have a practical meaning as long as observations are
considered to be elements of the space H, (cf.[8]), i.e. as long as they appear with zero
probability.

A' "’q*'f
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